
4 TH EUROPEAN FREQUENCY AND TIME FORUM NEUCHATEL - 13 - 14 - 15 MARCH 1990 

s.ulon P O - 0 1  "bw 11 

TIME DOMAIN FREQUENCY STABILITY CALCULATED FROM THE FREQUENCY DOMAIN: AN UPDATE 

F. L.  Walls, John Gary, hbbie O'Callagher, Linda Sweet, and Rolnnd Sueet 

National Institute of Standards and Technology 
Boulder. Colorado 80303 USA 

Abrtrcrct 
Iri this paper ve investigate the dependence of the fractional frequency stability measurea a , ( ? )  and 
modo,(r) on the parameter 2rfhr for common pover-law noiae types. 
tlie value of o , ( f )  and modo,(r) in the Llmit that 2rf,,r is either small  or h r g e  compnred t o  1. 
implempiited the calculations using numerical techniques which make i t  possible t o  perform the calculations 
for virtually any value of 21f,r and a vide variety of high-frequency filters. 
dlfferences for o , ( r )  depending on the filter. when 2rfhr << 1. 
of I I l t e r  slope for 2rf,,r S 1. 
futiction of n. the number of measurements averaged together in the calculations of modo ( r ) .  
differences from the values of R(II) versus n given in the literature for both flicker-pkase and flickcr- 
I reqiwiiry iioise types. 

Previous inveatigatorr have calculated 
We have 

We find significant 
The values for a , ( r )  are nearly independent 

O f  particular importance is R(n), the ratio of a , ( ? )  t o  modu,(r). as a 
We find 

Lnt roductiog 

Tlie calculation of fractional frequency stability expressed in terms of the tvo sample or Allan Variance, 
v : ( r ) ,  from frequency domain measures such as the spectral density of frequency fluctuations, S,(f). is well 
ktiowti [ 1 - 3 ] : 

S , ( f ) .  for most physical systems used in signal handling. la characterized by random noise vhose pover 
sl'ectral density vacles as a simple pover law over vide ranges of Fourier frequencies, f. 
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calculated analytically under the condition that h f h r  is either very large or very small compared to  1. 
Here f, is  the equivalent noise bandvidth for the time domain characterization and r ir the measurement t i m e  
1 1 - 4 1 ,  

a , ( r )  can be 

Vhen these conditions are not fulfilled there are corrections to a,(r) that a m  not well known. 

The integral, 

can be treated as an oscillatory integral except in the neighborhood of the origin. 
measurtment time. Therefore, the integral is computed using one approximation in the neighborhood of the 
origin and a second method avay from the origin, that is 

ra is the minimum 

a; = I, + I, 

where 

with o chosen so that the first integral Is taken over q/2 cycles of the sin function, provided r = nro 
is large enough. Othervise i t  1s taken over 2/3 of the interval E,,. That is, a = minimum (F, +). 

I f  the function F, grows more slovly than f-' a t  f = 0 .  then the first integral exists. 
S,(f) grows no more rapidly than f-', and thus the integrand in this first integral has a removable 
singularity and can be computed using a general purpose quadrature routine. 

We assume that 



The recond integral is oscillatory. 
substitution. 

It can be transformed into canonical fora by use of tha tri601"tric 

3 1  1 ain'(rfr) = a - 5 cos(2rfr) t a c o m ( h f r ) ,  

and can therefore be written as the sum of three integrals. 

I* - I21 + 1 2 2  + 12,  

Since o ia chosen large enough to avoid the singularity at the origin. the first of these three integrals 
can be computed with the etandard quadrature routine. 
therefore computed using a routine, designed for Integrals of the form I f(x)ein(cn)dx or I f(x)cos(cn)dx 
where w can be very large. 
corresponds to w ) .  Additional details can be found in (41. 

The numerical code for S,(f) has the following fora. 

The remaining two Integrala are oacillacory and are 

These integrals may have values of nio which easily exceed 10' (here nro 

q f - 2  + C*f-' + c, + C,f + C , f *  
S,(f) = + c,. 

K(f)H(f) 

where K(f) is used to describe the offset on S,(f) due to locking to an external reference characterized by 
S,(f) = C,, and H(f) is used to provide high-frequency filtering. 
sharp cut-off, f, to attenuate the high frequency noise. The 
filter function K(f) must be chosen from the following four functions. 

Alternately we can use an infinitely 
The values of the Cs are stored in an array. 

K(f) = 1. 

where any or all of the n, can be 0. 

Resulfs 

Figure 1 shows the well known dependence of u , ( r )  on r for the c o m o n  noise typaa when 2rf,,r D 1 and an 
infinitely sharp filter at f,, is used to attenuate the high frequency noise.11-31 
between the results shown here, and that obtained for e single low pass filter is that the values for 
flicker phase are about lob smaller. 
within 1 b  with previous work. 

Figure 2 shows the results of our numerical calculation of u,(r) for a = 2 (white phase modulation noise) as 
a function of measurement time r and three values of f,. 
infinitely sharp filter of width f, and a single low pass filter of the form n(f) = (1 + f/f,)'. 
variations of u , ( r )  from one f, curve to the next we can uniquely determine the dependence of o , ( r )  on f, 
and on T in the limits where 2nfhr is either very small or large compared to 1. 
and r has been determined. the numerical coefficient can be calculated. 
very small or large compared to 1 they generally agree to within 18 with those obtained f r w  the analytical 
calculations 11-31, 
not, to our knowledge. been investigated before. Figures 3 to 6 show similar results for the other common 
noise types. For a single noise type, the slope of u, (r )  versus r ,  averaged over a decade in r ,  can vary 
videly depending on the value of trf,,r and the type of filter used. 
the various noise types with the infinitely sharp and single low-pass filters are given in Table 1. 11-31 

We have adapted the numerical techniques used to calculate u,(r) to calculate modu,(r) in the limit of an 
infinitely sharp filter of width f,. 

The mod sigma integral 

The only difference 

These calculations. performed using our numerical techniques, agree to 
They serve to verify that the codes are operating correctly. 

The calculetionr were made using both an 
From the 

Once the dependence on f, 
I n  the lisit that 21f,,r is either 

The dependence of u , ( r )  on r and 2rfhr near 2xf,,r = 1 for the tvo filter shapes has 

The asymptotic expressions of u , ( r )  for 

1 
n- 1 

k= 1 
2 1; 1 (n-k) ~~os(2nfkro)sinb(rfnr,)df I 

is more difficult to approximate because of the sum over k. 
integrals vhich takes a long time. 

Large values of n require computation of many 
The sum over k is eliminated by use of the following identity fS.61 



In 819 7 n- 1 
1 (n-k)coalk I - + - k= 1 i 2 w .  2 

Thia identity ia derlved by looking at the real part of a rum of complex exponentialr. 
real pert of the complex exponential. thir tranaformr the aum into a geometric aerier. 
aummed explicitly yielding the final formula. 
LO the following form for the integral: 

Since cor ir the 
Such a rer ier  can be 

Appllcation of t h i a  identify to the original integral lead. 

Thia integral can be evaluated in the same way aa the o:(n) integral. except that thir integrand ha. a 
aingularity for integral valuer of rof, instead of the aingle aingularity at f = 0. 
u:(n) integral. it is necesaary to use one routine near the aingularitiea and another routine for thoae 
aubintervala in vhich the integrand is hi6hly oacillatory. It is therefore neceerary to break up the 
interval of integration into fhrO subintervala and r w  the values of the integral over each of there amaller 
intervals. If E, is large this involves a lsrge number of aubintervala. Often, later aubintemals 
contribute negligibly to the value of the integral. 
ignoring further contributions is made every few aubintervala. If thia error is small relative to the 
computed value of the integral up to that point, then no further calculation ia done and the value returned 
by the program as modu:(n) is the dum of the intc6rationa done over the rubintervala up to that point. 
Additional details can be found in 141. 

Rather than show the explicit values of modu,(r). we have chosen to reprerent the reaulta ar 

Aa in the c u e  of the 

For thia reason an eatiute of the error produced by 

(modo, ( 7 )  1' 

[ o , ( r ) I 2  
R(n) = 

This form clearly shows the differences between o , ( r )  and modu,(r) as a function of noise type. 
interesting that R(n) shows a dependence on 2rfhr only for flicker phase noise (a = 1) using an infinitely 
sharp filter. 
2 differ somewhat from these given by previous h~eStigatOr8 [ 7 , 8 ] .  

It is 

For flicker phase and flicker frequency noiae types the reaults given in Figure 7 and Table 

DitcuPrion 

We believe that this numerical approach to the calculation of both u ( r )  and modu,(r) vi11 prove to be very 
useful. It offers more flexibility in the typca of noire which can ke considered and can eaaily accomodate 
varioua filter shaper. Such filter ahapes can be used to limit the noise bandridth or define the u n y  typea 
of servo systems found in modern frequency atandards. 
the dependence of u,(r)and modu,(r) on measurement time as a function of noiae type, the value of Pmf,,r, and 
filter ahape. 
noise type, depends strongly on the value of k f h r  and the hi@-frequency filter ahape. 
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Figure 1. 
compared to  1 and an i n f i n i t e l y  sharp f i l t e r  is used. 
S,(f)  = h., f - , .  
frequency modulation, S,(f) = h,. 
white phase modulation. S,(f) = h, f 2 .  

u, (r )  versua r fo r  the f ive  common power-law noise types i n  the l i m i t  that 2rf.r is large 
Curve a is fo r  randowwalk frequency modulation, 

Curve b ia for  f l i c k e r  frequency modulation, S,(f) = h-, f - , .  Curvo c La for white 
Curve d is f o r  f l i c k e r  phase modulation. S,(f) = h, E. Curve e is fo r  

Figure 2 .  
bandwidth. f,,. 
= 0.0016 Hz respec t ive ly .  
respectively . 

u, (r )  f o r  white phase modulation (0  = 2 )  as a function of measurement time, r ,  and measure-nt 
Curves a.  b. and c have an i n f i n i t e l y  sharp f i l t e r  with width, f, - 16 HE. f, I. 0.016 Hz, fh 

Curves d and e have a s ing le  pole f i l t e r  width. f, - 0.016 HE and f, = 0.0016 



Figure 3 .  
measurement bandwidth. f , .  Curves a, b. and c have an infinitely sharp filter with width, f, = 16 Hz. f, = 
0.016 Hz, f, = 0.0016 HZ respectively. 
f, = 0.0016 respectively. 

o ( 7 )  for flicker phase frequency modulation (a = 1) as a function of measurement time. r ,  and 

Curves d and e have a single pole filter width, f, = 0.016 Hr and 

Figure h .  
measurement bandwidth. f,. 
0.016 Hz. fh = 0.0016 Hz respectively. 
= 0.0016 respectively. 

u,(r)  for white frequency modulation (a = 0) as a function of measurement time, 1 .  and 
Curves a, b, and c have an infinitely sharp filter with width, f,, = 16 Hz. f, = 

Curves d and e have a single pole filter width, f,, = 0.016 Hz and f, 
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Figure 5. u ( r )  for flicker frequency modulation (a = -1) aa A function of waaurement ti-. r ,  and 
measurement Landwidth. f,. Curves a. b, and c have an infinitely aharp filter vlth width. f, - 16 Hz. f,, = 
0.016 Hz, f, = 0.0016 Hz respectively. Curve. d and e have a aingle pole filter vidth. f, - 0.016 Hz and f, 
= 0.0016 respectively. 
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Figure 6 .  
measurement Landwidth, f, for 1 .  Curves a, b, and c have an infinitely sharp filter vith vidth. f, = 16 Hz. 
f, = 0.016 Hs, f, = 0.0016 Hz respectively. Curves d and e have a single pole filter vidth. f, = 0.016 Hz 
and f, = 0.0016 respectively. 

0 ( r )  for random Walk frequency modulation (a = - 2 )  aa a function of measurement time and 



Figure 7 .  
modu,(r). 

Ratio of modu,(r)’ t o  o y ( r ) ’  as a function of n ,  the number of points  averaged t o  obtain 
The measurement time r = nro .  where ro is the minimum data in t e rva l .  

TABLE I .  
q , / 2 n  = f, is the  measurement system bandwidth--often ca l l ed  the high-frequency cutoff .  

Asymptotic forms of u:(r) fo r  Various power-law noise types and t v o  f i l t e r  types. Note: 
I n  n loge. 

N a m  of Noise 0 S,(f) < ( r )  

q, r>>l q, r>>l 4 r<<l 4 r<<l 
I n f i n i t e  Sharp Single Pole In f in i t e  Sharp Single Pole 

F i l t e r  F i l t e r  F i l t e r  F i l t e r  

2/3d f,’ r2ho 2/3r2 fb r rho  ho - ho 
Vhite Frequency 0 h, - 

Zr 2r  

Flicker Frequency - 1 h. , f-’ 2(ln(2))h- ,  2 ( In(  2) )h. x’ f b 2  r 2  h- En’ f,’ r2h-,  

2n2f, r’h- 2r’fbr2h. 2n2 rh. , 2n‘rh-‘ 
Random-Walk - 2  h.,f-’ 

Frequency 3 3 



*MIA 11 .  
IM or phase a ~ p 1 . s  averaged to obtain .odo:(r - nra) uhara re ia the mininu r u p l a  t i n ,  and 9, i a  21 t l w a  
he ncclrurensnt bandwidth f , .  

Ratio of . o + ( r )  to o:(r) va n. for c o m n  powar-law noira typaa S, ( f )  - h.r. n im the " b a r  of 

1 
2 
3 
L 

5 
6 
7 
8 
10 
14 
20 
30 
50 

100 

1 .ooo 
0.859 
0.840 
0.831 
0.830 
0.828 
0.627 
0.827 
0.826 
0.826 
0.825 
0.825 
0.825 

0.825 

1.000 
0.738 
0.701 
0.681 
0.684 
0.681 
0.679 
0.670 
0.677 
0.675 
0.675 
0.675 
0.675 
0.675 

1 .ooo 
0.616 
0.551 
0.530 
0.517 
0.514 
0.507 
0.506 

0.504 
0.502 

0.501 
0.500 
0.500 

0.500 

1 .Ooo 
0.568 
0.481 
0. LO5 

0.386 
0.349 
0.343 
0.319 
0.299 
0.274 
0.253 
0.233 
0.210 
0.186 

1 .m 
0.543 
0.618 
0.359 
0.324 
0.301 
0.283 
0.271 
0 . 2 5 3  

0.230 
0.210 
0.194 
0.176 
0.159 

1 .Ooo 
0.525 
0.384 
0.317 
0.279 
0.251 
0.235 
0.219 
0.203 
0.179 
0.163 
0.148 
0.134 
0.121 

1.OOO 
0.504 

0.355 
0.284 
0.241 
0.216 
0.195 
0.180 
0.160 
0.137 
0.119 
0.106 
0.0938 
0.0837 

1.000 
0.500 
0.330 
0.250 
0.200 
0.167 
0.163 
0.125 
0.100 
0.0714 
0.0500 

0.0333 
0.0200 
0.0100 

L i m i t  0.825 0.675 0.500 1 /n - [ 1.0A;719r] - 


